Math, asked by Ananththor, 10 months ago

Evaluate : log (1+tan 45º )2​

Answers

Answered by anuragsaxena12
4

Answer:

1

Step-by-step explanation:

log (1+tan 45)2

= log (1 + 1) 2 tan 45 = 1

= log (2) 2

= 1 log e to the base e is equal to 1

Answered by pulakmath007
9

\displaystyle \sf{ log_{2}(1 + tan  \: {45}^{ \circ}  )   } =  \bf \: 1

Given :

\displaystyle \sf{ log_{2}(1 + tan  \: {45}^{ \circ}  )   }

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ log_{2}(1 + tan  \: {45}^{ \circ}  )   }

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf{ log_{2}(1 + tan  \: {45}^{ \circ}  )   }

\displaystyle \sf{ =  log_{2}(1 + 1)   }

\displaystyle \sf{ =  log_{2}(2)   }

\displaystyle \sf{ =  1 \:  \:  \: \bigg[ \:  \because \:log_{a}(a) = 1 \bigg]   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

Similar questions