Evaluate sin² 27° + sin² 87° + sin² 33
Answers
Answered by
15
sin²27 + {sin²87 + sin²33}
= sin²27 + ( sin87 + sin33 )² -2sin87.sin33
[ use, formula,
sinA + sinB = 2sin(A + B)/2 .cos(A - B)/2
2sinA.sinB =cos(A - B) - cos(A + B) ]
=sin²27 + ( 2sin(87+33)/2.cos(87-33)/2 )² -{ cos(87-33) - cos(87 + 33) }
= sin²27 + (2×√3/2 cos27)² -cos54 + cos120
= sin²27 + 3cos²27 + cos120 - cos54°
=(sin²27 + cos²27) +2cos²27 +cos120 -cos54
= 1 + 2cos²27 -1/2 -cos54°
= 1 - cos54° + 2cos²27° -1/2
[use, (1 - cosx ) =2sin²27]
= 2sin²27 +2cos²27 -1/2
=2 -1/2 = 3/2
= sin²27 + ( sin87 + sin33 )² -2sin87.sin33
[ use, formula,
sinA + sinB = 2sin(A + B)/2 .cos(A - B)/2
2sinA.sinB =cos(A - B) - cos(A + B) ]
=sin²27 + ( 2sin(87+33)/2.cos(87-33)/2 )² -{ cos(87-33) - cos(87 + 33) }
= sin²27 + (2×√3/2 cos27)² -cos54 + cos120
= sin²27 + 3cos²27 + cos120 - cos54°
=(sin²27 + cos²27) +2cos²27 +cos120 -cos54
= 1 + 2cos²27 -1/2 -cos54°
= 1 - cos54° + 2cos²27° -1/2
[use, (1 - cosx ) =2sin²27]
= 2sin²27 +2cos²27 -1/2
=2 -1/2 = 3/2
Answered by
1
Answer:
sin²27 + {sin²87 + sin²33} = sin²27 + ( sin87 + sin33 )² -2sin87.sin33 [ use, formula, sinA + sinB = 2sin(A + B)/2 .cos(A - B)/2 2sinA.
Similar questions