Math, asked by Ataraxia, 2 months ago

Evaluate :-
  \displaystyle \sf\int \dfrac{1}{ {x}^{3}  - 1}dx

Answers

Answered by amansharma264
19

EXPLANATION.

\implies \displaystyle \int \dfrac{dx}{x^{3}  - 1}

As we know that,

We can write equation as,

⇒ x³ - 1 = x³ - 1³.

Apply the formula of :

⇒ (a³ - b³) = (a - b)(a² + ab + b²).

⇒ (x³ - 1³) = (x - 1)(x² + x + 1).

\implies \displaystyle  \int \dfrac{dx}{(x - 1)(x^{2}  + x + 1)}

\implies \dfrac{1}{(x - 1)(x^{2}  + x + 1)} \ = \dfrac{A}{(x - 1)} \ + \dfrac{Bx + C}{(x^{2}  + x + 1)}

\implies 1 =A(x^{2}  + x + 1) \ + (Bx + C)(x - 1)

\implies 1 = Ax^{2}  + Ax + A + Bx^{2}  - Bx + Cx - C.

\implies 1 = Ax^{2}  + Bx^{2}  + Ax - Bx + Cx + A - C.

\implies 1 = (A + B)x^{2}  + (A - B + C)x + (A - C)

Compare the coefficient of the equation, we get.

\implies A + B = 0. - - - - - (1).

\implies A - B + C = 0. - - - - - (2).

\implies A - C = 1. - - - - - (3).

\implies B = A + C . - - - - - (4).

\implies B = -A. - - - - - (5).

\implies A = 1 + C. - - - - - (6).

Put the value of equation (4) in equation (5), we get.

\implies A + C = -A.

\implies C  = -2A. - - - - - (7).

Put the value of equation (7) in equation (6), we get.

\implies A = 1 - 2A.

\implies 3A = 1.

\implies A = \dfrac{1}{3}

Put the value of A = 1/3 in equation (5), we get.

\implies B = -\dfrac{1}{3}

Put the value of A = 1/3 in equation (7), we get.

\implies C = -\dfrac{2}{3}

\implies \displaystyle  \int \dfrac{A}{(x - 1)} dx \ + \int \dfrac{Bx + C}{x^{2}  + x + 1}

\implies \displaystyle  \int \dfrac{dx}{3(x - 1)} \ + \int \dfrac{\bigg(\dfrac{-1}{3} x\bigg)+ \bigg(\dfrac{-2}{3} \bigg)}{x^{2}  + x + 1} dx

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{3} \int \dfrac{x + 2}{x^{2}  + x  + 1} dx

Multiply and divide second equation by 2, we get.

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} \int \dfrac{2x + 4}{x^{2}  + x + 1} dx

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} \int \dfrac{2x + 1 + 3}{x^{2}  + x + 1} dx

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} \int \dfrac{2x + 1}{x^{2}  + x + 1}  dx\ - \dfrac{3}{6} \int \dfrac{dx}{x^{2}  + x + 1}

In second equation,

Using substitution in equation, we get.

⇒ x² + x + 1 = t.

Differentiate w.r.t x, we get.

⇒ 2x + 1 dx = dt.

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} \int  \dfrac{dt}{t} \ - \dfrac{1}{2} \int \dfrac{dx}{x^{2}  + x + 1}

Put the value of t = x² + x + 1 in the equation, we get.

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} ln |x^{2}  + x + 1| \ - \dfrac{1}{2} \int \dfrac{dx}{x^{2}  + x + 1}

From equation 3rd we can apply perfect square method, we get.

⇒ x² + x + 1 = (x + 1/2)² + (√3/2)².

Using this formula in the equation, we get.

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} ln |x^{2}  + x + 1|  \ - \dfrac{1}{2}  \int \dfrac{dx}{\bigg(x + \dfrac{1}{2} \bigg)^{2}  + \bigg(\dfrac{\sqrt{3} }{2} \bigg)^{2} }

As we know that,

Formula of :

\implies \displaystyle \int \dfrac{dx}{x^{2}  + a^{2} } \ = \dfrac{1}{a}  tan^{-1} \bigg(\dfrac{x}{a} \bigg) + C.

Using this formula in the 3rd equation, we get.

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} ln |x^{2}  + x + 1|  \ - \dfrac{1}{2} \times \dfrac{1}{\bigg(\dfrac{\sqrt{3} }{2} \bigg)}  tan^{-1} \bigg(\dfrac{(x + 1/2)}{(\sqrt{3} /2)} \bigg) + C.

\implies \displaystyle  \dfrac{1}{3} ln|x - 1|  \ - \dfrac{1}{6} ln |x^{2}  + x + 1|  \ - \dfrac{1}{\sqrt{3} } tan^{-1} \bigg(\dfrac{2x + 1}{\sqrt{3} } \bigg) + C.


Ataraxia: Great!! Thanks a lottt!!
amansharma264: Wlcm :))
MystícPhoeníx: Miraculous Birooo :D
amansharma264: Thanku so much :))
Answered by nakkadevi1977
0

Step-by-step explanation:

this is the ANSWER

amanshrama264 is correct

Attachments:
Similar questions
Hindi, 10 months ago