Evaluate:
Answers
Answered by
0
we have to evaluate : ( cos²32° + cos²58° )/(cos²59° + cos²31°) + sin90° - tan45° + cos0°
we know, cos(90° - A) = sinA
cos32° = cos(90° - 58°) = sin58°
so, cos²32° + cos²58° = sin²58° + cos²58° = 1.....(1)
similarly, cos59° = cos(90° - 31°) = sin31°
so, cos²59° + cos²31° = sin²31° + cos²31° = 1......(2)
now, ( cos²32° + cos²58° )/(cos²59° + cos²31°) + sin90° - tan45° + cos0°
we know, sin90° = 1, tan45° = 1 and cos0° = 1
from equations (1), (2)
= 1/1 + 1 - 1 + 1
= 1 - 1 + 1
= 1 [ans ]
we know, cos(90° - A) = sinA
cos32° = cos(90° - 58°) = sin58°
so, cos²32° + cos²58° = sin²58° + cos²58° = 1.....(1)
similarly, cos59° = cos(90° - 31°) = sin31°
so, cos²59° + cos²31° = sin²31° + cos²31° = 1......(2)
now, ( cos²32° + cos²58° )/(cos²59° + cos²31°) + sin90° - tan45° + cos0°
we know, sin90° = 1, tan45° = 1 and cos0° = 1
from equations (1), (2)
= 1/1 + 1 - 1 + 1
= 1 - 1 + 1
= 1 [ans ]
Answered by
0
Answer:
2
Step-by-step explanation:
The very first term i.e. the fraction should be reduced to a simpler form.
We have to use the formula: cos(90-θ) = sinθ.
Similiarly, cos²32° = cos²(90-58)° = sin²58°
and cos²59° = cos²(90-31)° = sin²31°.
Also we know that sin²θ + cos²θ = 1.
Therefore,
+ sin90° - tan45° + cos0°
or, + sin90° - tan45° + cos0°
or, + 1 - 1 + 1 [Because, sin90° = tan45° = cos0° = 1]
or, 1 + 1 - 1 + 1
or, 2 [Ans]
Similar questions