Math, asked by PragyaTbia, 1 year ago

Evaluate: \int\limits^{\pi/2}_{-\pi/2} {\log (\frac{2-\sin x}{2+\sin x})} \, dx

Answers

Answered by hukam0685
0
Solution:

let
f(x) =  log( \frac{2 -  \sin(x) }{2 +  \sin(x) } )  \\  \\ then \\  \\ f( - x) =  log( \frac{2 +  \sin(x) }{2 -  \sin(x) } )  \\  \\  = log ({ \frac{2 - sin \: x}{2 - sin \: x} })^{ - 1}  \\  \\  \\  =  -  log( \frac{2 -  \sin(x) }{2 +  \sin(x) } ) \\  \\  =  - f(x) \\  \\
because f(x) is an odd function of x

and we know that

\int\limits^{a}_{-a}f(x) \: dx = 0 \\  \\
when f(x) is an odd function of x

so

\int\limits^{\pi/2}_{-\pi/2} {\log (\frac{2-\sin x}{2+\sin x})} \, dx = 0 \\  \\
Similar questions
Math, 1 year ago