Evaluate:
Answers
Answered by
13
Answered by
1
ANSWER:--------------
∫ 1−x1+xdx
=∫(1+x)(1+x)(1−x)(1+x)dx\mathrm{=\int \sqrt{\frac{(1+x)(1+x)}{(1-
x)(1+x)}}\:dx}=∫
(1−x)(1+x)
(1+x)(1+x)dx
=∫(1+x)21−x2dx\mathrm{=\int \sqrt{\frac{(1+x)^{2}}{1-x^{2}}}\:dx}
=∫ 1−x 2(1+x) 2dx
=∫1+x1−x2dx\mathrm{=\int \frac{1+x}{\sqrt{1-x^{2}}}\:dx}
=∫ 1−x 21+xdx
=∫dx1−x2+∫xdx1−x2\mathrm{=\int \frac{dx}{\sqrt{1-x^{2}}}+\int \frac{x\:dx}{\sqrt{1-x^{2}}}}=∫
1−x 2dx
+∫ 1−x 2xdx
=sin−1x+1−x2+C\mathrm
{=sin^{-1}x+\sqrt{1-x^{2}}+C}=sin
−1x+ 1−x 2+C
C integral constant
\text{where C is constant}
{C is integral constant }
→∫1+x1−xdx
=sin−1x+1−x2+C\to
\boxed{\mathrm
{\int \sqrt{\frac{1+x}
{1-x}}\:dx=sin^{-1}x+\sqrt
{1-x^{2}}+C}}→
∫ 1−x1+x
dx=sin −1x+ 1−x 2+C
hope it helps:---
T!—!ANKS!!!
Anonymous:
hay
Similar questions