Evaluate
cos⁴dx
Answers
Question :
Solution :
★ ═════════════════════ ★
Step-by-step explanation:
Question :
\ast\ \; \displaystyle \sf \red{Evaluate\ \int cos^4 x\ dx}∗ Evaluate ∫cos
4
x dx
Solution :
\displaystyle \sf \int cos^4x\ dx∫cos
4
x dx
\displaystyle \longrightarrow \sf \int (cos^2x)^2\ dx⟶∫(cos
2
x)
2
dx
\bullet\ \; \sf \orange{1+cos\ 2 \theta = 2\ cos^2 \theta}∙ 1+cos 2θ=2 cos
2
θ
\bullet\ \; \sf \green{cos^2 \theta = \dfrac{1+cos\ 2 \theta}{2}}∙ cos
2
θ=
2
1+cos 2θ
\displaystyle \longrightarrow \sf \int \left( \dfrac{1+cos\ 2x}{2} \right)^2\ dx⟶∫(
2
1+cos 2x
)
2
dx
\displaystyle \longrightarrow \sf \int \dfrac{1+cos^22x+2\ cos\ 2x}{4}\ dx⟶∫
4
1+cos
2
2x+2 cos 2x
dx
\bullet\ \; \sf \purple{cos^2(2 \theta)=\dfrac{1+cos\ 2(2 \theta)}{2}}∙ cos
2
(2θ)=
2
1+cos 2(2θ)
\displaystyle \longrightarrow \sf \int \dfrac{1+\frac{1+cos\ 2(2x)}{2}+2\ cos\ 2x}{4}\ dx⟶∫
4
1+
2
1+cos 2(2x)
+2 cos 2x
dx
\displaystyle \longrightarrow \sf \int \dfrac{2+1+cos\ 4x+4\ cos\ 2x}{8}\ dx⟶∫
8
2+1+cos 4x+4 cos 2x
dx
\displaystyle \longrightarrow \sf \int \dfrac{3+cos\ 4x+4\ cos\ 2x}{8}\ dx⟶∫
8
3+cos 4x+4 cos 2x
dx
\bullet\ \; \sf \red{\int cos\ x= sin\ x\ \; \&\ \; \int cos\ 2x = \frac{sin\ 2x}{2}}∙ ∫cos x=sin x & ∫cos 2x=
2
sin 2x
\displaystyle \longrightarrow \sf \dfrac{1}{8} \int (3+cos\ 4x+4\ cos\ 2x)\ dx⟶
8
1
∫(3+cos 4x+4 cos 2x) dx
\displaystyle \longrightarrow \sf \dfrac{1}{8} \left[ 3x+ \dfrac{cos\ 4x}{4}+4 \dfrac{cos\ 2x}{2} \right]\ + c⟶
8
1
[3x+
4
cos 4x
+4
2
cos 2x
] +c
\displaystyle \longrightarrow \sf \pink{\dfrac{1}{8} \left[ 3x+ \dfrac{cos\ 4x}{4}+2\ cos\ 2x \right]\ + c}⟶
8
1
[3x+
4
cos 4x
+2 cos 2x] +c
★ ═════════════════════ ★