Math, asked by Rajpoot5189, 1 year ago

Evaluate:
\log_{5} \frac{\sqrt[4]{25}}{625}

Answers

Answered by Avengers00
10
\underline{\underline{\huge{\textbf{Solution:}}}}

\log_{5} \frac{\sqrt[4]{25}}{625}

\underline{\huge{\textsf{Step-1:}}}
Express 25 and 625 in terms of same base (i.e., 5)

\log_{5} \frac{\sqrt[4]{5^{2}}}{5^{4}}

\implies \log_{5} \dfrac{(5)^{2(\frac{1}{4})}}{5^{4}}

\underline{\huge{\textsf{Step-2:}}}
Using the Identity (a^{m})^{n} = a^{mn}

\implies {5}^{2(\frac{1}{4})} = 5^{(\frac{1}{2})}

\implies \log_{5} \dfrac{5^{(\frac{1}{2})}}{5^{4}}

\underline{\huge{\textsf{Step-3:}}}
Using the Identity \dfrac{a^{m}}{a^{n}} = a^{m-n}

\implies \frac{5^{(\frac{1}{2})}}{5^{4}} = 5^{(\frac{1}{2})-4}

\implies \frac{5^{(\frac{1}{2})}}{5^{2}} = 5^{(\frac{1-8}{2})}

\implies \frac{5^{(\frac{1}{2})}}{5^{2}} = 5^{(\frac{-7}{2})}

\implies \log_{5} 5^{(\frac{-7}{2})}

\underline{\huge{\textsf{Step-4:}}}
Using the Property of Logarithm \log_{a} a^{x} = x\:  \forall \, a>0

\implies \log_{5} 5^{(\frac{-7}{2})} = (\frac{-7}{2})}

\therefore

\blacksquare \: \: \mathbf{\log_{5} \dfrac{\sqrt[4]{25}}{625} = \underline{(\frac{-7}{2})}}
Similar questions