Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \frac{49^{x}-2(35^{x})+25^{x}}{x^{2}}

Answers

Answered by Anonymous
1
HOPE IT HELPS U ✌️✌️
Attachments:
Answered by abhi178
0

we have to evaluate, \rm \displaystyle \lim_{x \to 0}\ \frac{49^{x}-2(35^{x})+25^{x}}{x^{2}}

putting, x = 0

we get “ 0/0 ” is the form of limit.

so, \rm \displaystyle \lim_{x \to 0}\ \frac{49^{x}-2(35^{x})+25^{x}}{x^{2}}

= \displaystyle\lim_{x\to 0}\frac{(7^x)^2-2(7^x)(5^x)+(5^x)^2}{x^2}

= \displaystyle\lim_{x\to 0}\frac{(7^x-5^x)^2}{x^2}

= \displaystyle\lim_{x\to 0}\left(\frac{7^x-5^x}{x}\right)^2

= \left(\displaystyle\lim_{x\to 0}\frac{(7^x-1)-(5^x-1)}{x}\right)^2

we know, \displaystyle\lim_{x\to 0}\frac{a^x-1}{x}=loga

= \left(\displaystyle\lim_{x\to 0}\frac{\frac{(7^x-1)}{x}\times x-\frac{(5^x-1)}{x}\times x}{x}\right)^2

= [log7 - log5]²

= [log(7/5)]²

= log²(7/5) [ans]

Similar questions
Math, 6 months ago
Math, 1 year ago