Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{x\to 0}\ \frac{\sqrt{1+x+x^{2}}-1}{x}

Answers

Answered by mysticd
0
Solution :

\rm \displaystyle \lim_{x\to 0}\ \frac{\sqrt{1+x+x^{2}}-1}{x}

_________________________

[√(1+x+x²) -1][√(1+x+x²)+1]/{x[(√(1+x+x²)+1]}

= [(√1+x+x²)² - 1²]/[x(√1+x+x² + 1 )]

= ( 1+x+x²-1 )/[x(√1+x+x² + 1 )]

= [x(1 + x )]/[x(√1+x+x² + 1 )]

= ( 1 + x )/( √1+x+x² + 1 )

******************************************

\rm \displaystyle \lim_{x\to 0}\ \frac{(1+x)}{\sqrt{1+x+x^{2}}+1}

= ( 1 + 0 )/[ √(1+0+0) + 1 ]

= 1/( 1 + 1 )

= 1/2

••••
Similar questions
Math, 1 year ago
Math, 1 year ago