Evaluate:
Answers
Answered by
0
Solution :
![\rm \displaystyle \lim_{x \to \infty}\ \frac{7x^{2}+5x-3}{8x^{2}- 2x+7} \rm \displaystyle \lim_{x \to \infty}\ \frac{7x^{2}+5x-3}{8x^{2}- 2x+7}](https://tex.z-dn.net/?f=%5Crm+%5Cdisplaystyle+%5Clim_%7Bx+%5Cto+%5Cinfty%7D%5C+%5Cfrac%7B7x%5E%7B2%7D%2B5x-3%7D%7B8x%5E%7B2%7D-+2x%2B7%7D)
Divide numerator and
denominator by x², we get
=![\rm \displaystyle \lim_{x \to \infty}\ \frac{7+\frac{5}{x}-\frac{3}{x^2}}{8-\frac{2}{x}+\frac{7}{x^2}} \rm \displaystyle \lim_{x \to \infty}\ \frac{7+\frac{5}{x}-\frac{3}{x^2}}{8-\frac{2}{x}+\frac{7}{x^2}}](https://tex.z-dn.net/?f=%5Crm+%5Cdisplaystyle+%5Clim_%7Bx+%5Cto+%5Cinfty%7D%5C+%5Cfrac%7B7%2B%5Cfrac%7B5%7D%7Bx%7D-%5Cfrac%7B3%7D%7Bx%5E2%7D%7D%7B8-%5Cfrac%7B2%7D%7Bx%7D%2B%5Cfrac%7B7%7D%7Bx%5E2%7D%7D)
= ( 7 + 0 - 0 )/( 8 - 0 + 0 )
= 7/8
••••
=
Divide numerator and
denominator by x², we get
=
= ( 7 + 0 - 0 )/( 8 - 0 + 0 )
= 7/8
••••
=
Similar questions