Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to \infty}\ \frac{7x^{2}+5x-3}{8x^{2}- 2x+7}

Answers

Answered by mysticd
0
Solution :

\rm \displaystyle \lim_{x \to \infty}\ \frac{7x^{2}+5x-3}{8x^{2}- 2x+7}

Divide numerator and

denominator by x², we get

= \rm \displaystyle \lim_{x \to \infty}\ \frac{7+\frac{5}{x}-\frac{3}{x^2}}{8-\frac{2}{x}+\frac{7}{x^2}}

= ( 7 + 0 - 0 )/( 8 - 0 + 0 )

= 7/8

••••

=
Similar questions