Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to \infty}\ \sqrt{x^{2}+3x}-x

Answers

Answered by mysticd
1
Solution :

i ) (√x²+3x) - x

={[(√x²+3x)-x][(√x²+3x)+x]}/[(√(x²+3x) + x ]

= [ (√x²+3x)² - x² ]/[(√x²+3x) + x ]

= ( x² + 3x - x² )/{x[√1+(3/x)+ 1 ]}

= 3x/[ x( √(1+3/x) +1 ]

= 3/[√(1 + 3/x) + 1 ] ----( 1 )

Now ,

\rm \displaystyle \lim_{x \to \infty}\ \sqrt{x^{2}+3x}-x

= \rm \displaystyle \lim_{x \to \infty}\ \frac{3}{\sqrt{1+\frac{3}{x}}+1]}

= 3/[ √(1+0) + 1 ]

= 3/2

••••
Similar questions
Math, 1 year ago