Evaluate:
Answers
Answered by
1
Solution :
i ) (√x²+3x) - x
={[(√x²+3x)-x][(√x²+3x)+x]}/[(√(x²+3x) + x ]
= [ (√x²+3x)² - x² ]/[(√x²+3x) + x ]
= ( x² + 3x - x² )/{x[√1+(3/x)+ 1 ]}
= 3x/[ x( √(1+3/x) +1 ]
= 3/[√(1 + 3/x) + 1 ] ----( 1 )
Now ,
=
= 3/[ √(1+0) + 1 ]
= 3/2
••••
i ) (√x²+3x) - x
={[(√x²+3x)-x][(√x²+3x)+x]}/[(√(x²+3x) + x ]
= [ (√x²+3x)² - x² ]/[(√x²+3x) + x ]
= ( x² + 3x - x² )/{x[√1+(3/x)+ 1 ]}
= 3x/[ x( √(1+3/x) +1 ]
= 3/[√(1 + 3/x) + 1 ] ----( 1 )
Now ,
=
= 3/[ √(1+0) + 1 ]
= 3/2
••••
Similar questions