Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x\to \pi/6}\ \frac{2- cosec \ x}{\cot^{2} x-3}

Answers

Answered by mysticd
0
Solution :

________________________

Simplification :

( 2 - cosecx )/( cot² x - 3 )

= ( 2-cosecx )/(cosec²x-1-3)

= (2-cosecx)/[ cosec²x - 2² ]

= [-(cosecx-2)]/[(cosecx-2)(cosecx+2)]

After cancellation, we get

= -1/(cosecx+2) ---( 1 )
__________________________

Now ,

\rm \displaystyle \lim_{x\to \pi/6}\ \frac{2- cosec \ x}{\cot^{2} x-3}

= \rm \displaystyle \lim_{x\to \pi/6}\ \frac{-1}{(cosec \x + 2)}

= \rm \displaystyle \frac{-1}{cosec \frac{π}{6}+2}

= \rm \displaystyle \frac{-1}{(2+2)}

= -1/4

••••
Similar questions
Math, 1 year ago
Math, 1 year ago