Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x\to \pi}\ \frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin^{2} x}

Answers

Answered by ishanpandey007
0
See the image and ask if there is any problem.
.
.
.
.
Please mark it brainliest.
Attachments:
Answered by mysticd
1
Solution :

______________________

Simplification :

(√1-cosx - √2)/sin²x

=[(√1-cosx -√2)(√1-cosx +√2)]/[sin²x(√1-cosx+√2]

= [(√1-cosx)² -(√2)²]/[(1-cos²x)(√1-cosx+√2)]

=[1-cosx-2]/[(1-cosx)(1+cosx)(√1-cosx+√2)]

= [-(cosx+1)][(1-cosx)(1+cosx)(√1-cosx+√2)]

After cancellation, we get

= -1/[(1-cosx)(√1+cosx+√2)]-----( 1 )
_____________________________

Here ,

\rm \displaystyle \lim_{x\to \pi}\ \frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin^{2} x}

= \rm \displaystyle \lim_{x\to \pi}\ \frac{-1}{(1-cos\ x)(\sqrt{1-\cos x}+\sqrt{2})}

[ from ( 1 ) ]

= \rm \displaystyle \frac{-1}{(1 - cos\ π)(\sqrt{1+ \cos π}+\sqrt 2}

= \rm \displaystyle \frac{-1}{(1+1)(\sqrt 2+\sqrt 2)}

= -1/(2 × 2√2)

= -1/4√2

••••
Similar questions
Math, 1 year ago
Math, 1 year ago