Math, asked by Anonymous, 11 days ago

Evaluate the limit :-

 { \sf { \lim_{ n \rightarrow \infty { \bigg ( \dfrac{n+2}{2n+7} } \bigg ) } } }

Answers

Answered by Sahan677
6

 \bold \red{\lim_{n \to \infty} (\frac{n + 2}{2 n + 2}})

 \small{\bold \red{\lim_{n \to \infty} c f{\left(n \right)} = c \lim_{n \to \infty} f{\left(n \right)} \: with  \: c=\frac{1}{2} \: and  \: f{\left(n \right)} = \frac{n + 2}{n + 1}:}}

\color{red}{\lim_{n \to \infty} \frac{n + 2}{2 n + 2}} = \color{red}{\left(\frac{\lim_{n \to \infty} \frac{n + 2}{n + 1}}{2}\right)}

 \bold{\frac{\color{green}{\lim_{n \to \infty} \frac{n + 2}{n + 1}}}{2} = \frac{\color{red}{\lim_{n \to \infty} \frac{n \frac{n + 2}{n}}{n \frac{n + 1}{n}}}}{2}}

 \bold{ \pink{\frac{\color{red}{\lim_{n \to \infty} \frac{n \frac{n + 2}{n}}{n \frac{n + 1}{n}}}}{2} = \frac{\color{red}{\lim_{n \to \infty} \frac{1 + \frac{2}{n}}{1 + \frac{1}{n}}}}{2}}}

 \bold{ \blue{\frac{\color{re}{\lim_{n \to \infty} \frac{1 + \frac{2}{n}}{1 + \frac{1}{n}}}}{2} = \frac{\color{red}{\frac{\lim_{n \to \infty}\left(1 + \frac{2}{n}\right)}{\lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}}}{2}}}

 \green{\frac{\color{red}{\lim_{n \to \infty}\left(1 + \frac{2}{n}\right)}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)} = \frac{\color{red}{\left(\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{2}{n}\right)}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}}

\frac{\lim_{n \to \infty} \frac{2}{n} + \color{red}{\lim_{n \to \infty} 1}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)} = \frac{\lim_{n \to \infty} \frac{2}{n} + \color{red}{1}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}

{ \bold \green{\lim_{n \to \infty} \:c\: f{\left(n \right)} = c \lim_{n \to \infty} f{\left(n \right)} \:with \:c=2 \:and\: f{\left(n \right)} = \frac{1}{n}}}

\frac{1 + \color{red}{\lim_{n \to \infty} \frac{2}{n}}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)} = \frac{1 + \color{red}{\left(2 \lim_{n \to \infty} \frac{1}{n}\right)}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}

\frac{1 + 2 \color{red}{\lim_{n \to \infty} \frac{1}{n}}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)} = \frac{1 + 2 \color{red}{\frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} n}}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}

 \red{\frac{1 + \frac{2 \color{red}{\lim_{n \to \infty} 1}}{\lim_{n \to \infty} n}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)} = \frac{1 + \frac{2 \color{red}{1}}{\lim_{n \to \infty} n}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}}

 \pink{\frac{1 + 2 \color{blue}{1 \frac{1}{\lim_{n \to \infty} n}}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)} = \frac{1 + 2 \color{red}{\left(0\right)}}{2 \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}}

{ \bold \green{\frac{\color{red}{\lim_{n \to \infty}\left(1 + \frac{1}{n}\right)}^{-1}}{2} = \frac{\color{red}{\left(\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}\right)}^{-1}}{2}}}

 \bold{\frac{\left(\lim_{n \to \infty} \frac{1}{n} + \color{red}{\lim_{n \to \infty} 1}\right)^{-1}}{2} = \frac{\left(\lim_{n \to \infty} \frac{1}{n} + \color{red}{1}\right)^{-1}}{2}}

 \bold{\frac{\left(1 + \color{red}{\lim_{n \to \infty} \frac{1}{n}}\right)^{-1}}{2} = \frac{\left(1 + \color{red}{\frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} n}}\right)^{-1}}{2}}

 \purple{\frac{\left(1 + \frac{\color{red}{\lim_{n \to \infty} 1}}{\lim_{n \to \infty} n}\right)^{-1}}{2} = \frac{\left(1 + \frac{\color{red}{1}}{\lim_{n \to \infty} n}\right)^{-1}}{2}}

 \red{\frac{\left(1 + \color{red}{1 \frac{1}{\lim_{n \to \infty} n}}\right)^{-1}}{2} = \frac{\left(1 + \color{red}{\left(0\right)}\right)^{-1}}{2}}

 \bold{\lim_{n \to \infty} (\frac{n + 2}{2 n + 2} = \frac{1}{2}})

Similar questions