Evaluate : ∫(x - 3)√(x^2 + 3x - 18) dx
Answers
Step-by-step explanation:
Given Evaluate : ∫(x - 3)√(x^2 + 3x - 18) dx
- Now we can write x – 3 as P + Q d/dx (x^2 + 3x – 18)
- So x – 3 = P + Q (2x + 3)
- Now comparing the coefficient of x we get
- 2 Q = 1
- Or Q = ½
- Also constant term will be
- So – 3 = P + 3 Q
- Or – 3 = P + 3(1/2)
- So P = - 9/2
- Now substituting the values of P and Q we have
- So ∫(- 9/2 + ½ (2x + 3) ) √x^2 + 3x – 18 dx
- So – 9/2 ∫√x^2 + 3x – 18 + 1/2 ∫(2x + 3) √x^2 + 3x – 18 dx
- [Now it is a quadratic equation and we can write this as
- Now coefficient of x is 3, multiply 3 by ½ we get 3/2, so (3/2)^2 = 9/4
- So (x^2 + 3x + 9/4) – 18 – 9/4
- So (x + 3/2)^2 – (9/2)^2]
- So – 9/2 ∫√ (x + 3/2)^2 – (9/2)^2 dx + ½ ∫ √t dt + ½ [ t^3/2 / 3/2] + C
- Now we have ∫ √x^2 – a^2 = x/2 √x^2 – a^2 – a^2/2 log (x + √x^2 - a^2)
- So – 9/2 [ ½ (x + 3/2) √x^2 + 3x – 18 – 81 / 4 log [ (x + 3/2) + √x^2 + 3x – 18] + 1/3 (x^2 + 3x – 18)^3/2
- So – 9/2 (2x + 3 / 4 √x^2 + 3x – 18 – 81 / 8 log (2x + 3 / 2 + √x^2 + 3x – 18) + 1/3 (x^2 + 3x – 18)^3/2 + C
Reference link will be
https://brainly.in/question/14791355
Answer:
Step-by-step explanation:
Given Evaluate : ∫(x - 3)√(x^2 + 3x - 18) dx
Now we can write x – 3 as P + Q d/dx (x^2 + 3x – 18)
So x – 3 = P + Q (2x + 3)
Now comparing the coefficient of x we get
2 Q = 1
Or Q = ½
Also constant term will be
So – 3 = P + 3 Q
Or – 3 = P + 3(1/2)
So P = - 9/2
Now substituting the values of P and Q we have
So ∫(- 9/2 + ½ (2x + 3) ) √x^2 + 3x – 18 dx
So – 9/2 ∫√x^2 + 3x – 18 + 1/2 ∫(2x + 3) √x^2 + 3x – 18 dx
[Now it is a quadratic equation and we can write this as
Now coefficient of x is 3, multiply 3 by ½ we get 3/2, so (3/2)^2 = 9/4
So (x^2 + 3x + 9/4) – 18 – 9/4
So (x + 3/2)^2 – (9/2)^2]
So – 9/2 ∫√ (x + 3/2)^2 – (9/2)^2 dx + ½ ∫ √t dt + ½ [ t^3/2 / 3/2] + C
Now we have ∫ √x^2 – a^2 = x/2 √x^2 – a^2 – a^2/2 log (x + √x^2 - a^2)
So – 9/2 [ ½ (x + 3/2) √x^2 + 3x – 18 – 81 / 4 log [ (x + 3/2) + √x^2 + 3x – 18] + 1/3 (x^2 + 3x – 18)^3/2
So – 9/2 (2x + 3 / 4 √x^2 + 3x – 18 – 81 / 8 log (2x + 3 / 2 + √x^2 + 3x – 18) + 1/3 (x^2 + 3x – 18)^3/2 + C