Math, asked by Anonymous, 1 day ago

EVALUATE



❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​​​​​​​

Attachments:

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: g(x) = \begin{cases} &\sf{ {x}^{2} - 3 \:  \: when \: x < 1 } \\ &\sf{2x + 4 \:  \: when \: x > 1} \end{cases}\end{gathered}\end{gathered}

We know, Limit exist at x = 1 iff LHL of g(x) at x = 1 and RHL of g(x) at x = 1 is equal.

That means,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1} \bf \:  g(x) \: exist \: iff

 \red{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}g(x) \:   =  \: \displaystyle\lim_{x \to 1^ + }g(x) \: }

Consider LHL at x = 1

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}g(x)

\rm \:  =  \:\displaystyle\lim_{x \to 1^-}( {x}^{2} - 3)

To evaluate this limit, we use method of Substitution.

So,

 \red{\rm :\longmapsto\:Put  \: x = 1-h, \:  as  \: x \to 1, \:  so  \: h \to 0}

So, above can be rewritten as

\rm \:  =  \:\displaystyle\lim_{h \to \: 0} \: [ {(1 - h)}^{2}  - 3]

\rm \:  =  \: {(1 - 0)}^{2} - 3

\rm \:  =  \: {1}^{2} - 3

\rm \:  =  \: 1 - 3

\rm \:  =  \:  - 2

\rm \implies\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 1^-}g(x) =  - 2 \: }}

Now, Consider RHL at x = 1

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^ + }g(x)

\rm \:  =  \:\displaystyle\lim_{x \to 1^ + }( 2x + 4)

To evaluate this limit, we use method of Substitution.

So,

 \red{\rm :\longmapsto\:Put  \: x = 1 + h, \:  as  \: x \to 1, \:  so  \: h \to 0}

So, above can be rewritten as

\rm \:  =  \:\displaystyle\lim_{h \to \: 0} \: [ 2(1 + h) + 4]

\rm \:  =  \:2(1 + 0) + 4

\rm \:  =  \:2(1) + 4

\rm \:  =  \:2 + 4

\rm \:  =  \:6

So,

\rm \implies\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 1^ + }g(x) = 6 \: }}

Thus,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}g(x) \:  \ne \: \displaystyle\lim_{x \to 1^ + }g(x)

So,

 \red{\bf\implies \:\boxed{ \tt{ \: \displaystyle\lim_{x \to 1} \bf \: g(x) \: doesnot \: exist}}}


anindyaadhikari13: Excellent presentation.
Similar questions