Math, asked by simranshaik537, 5 months ago

Example 5 : Find a point on the y-axis which
is equidistant from the points A6, 5) and
B(-4, 3).​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
51

Answer :

  • The coordinates of the point on y-axis which is equidistant from the points A( 6 , 5 ) and B ( -4 , 3 )

━━━━━━━━━━━━━━━━━━━━━━━━━

  • Let the coordinates of the point be C ( x , y )
  • Given that the point C is in y-axis
  • x coordinate of the point = 0
  • AC = BC

\underline{\boxed{\sf Distance \ formula = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}}

 :\implies \sf AC= BC

:\implies \sf  \sqrt{(0-6)^2+(y-5)^2} = \sqrt{(0+4)^2+(y-3)^2}

:\implies \sf \sqrt{(-6)^2+y^2+5^2-2 \times y \times 5} = \sqrt{4^2+y^2+3^3- 2 \times y \times 3}

:\implies \sf \sqrt{36+y^2+25-10y} = \sqrt{16+y^2+9-6y}

 :\implies \sf \sqrt{y^2-10y+61} = \sqrt{y^2-6y+25}

:\implies \sf y^2-10y+61 = y^2-6y+25

:\implies \sf -10y+6y = 25-61

 :\implies \sf -4y = -36

:\implies\underline{\boxed{\pink{\mathfrak{y=9}}}}


Anonymous: Awesome!
Answered by Anonymous
49

Answer:

 \: { \huge{ \underline{ \sf{ \red{Solution:}}}}}

We know that a point on the y - axis is of the form (0, y)

So, let the point P(0, y) be equidistant from A and B

 \to{ \sf{PA =  \sqrt{ {(6 - 0)}^{2}  +  {(5 - y)}^{2} } }} \\

 \to{ \sf{PB =  \sqrt{ {( - 4 - 0)}^{2} +  {(3 - y)}^{2}  } }} \\

 \to{ \sf{PA² = PB²}} \\

So,

{ \sf{ {(6 - 0)}^{2} +  {(5 - y)}^{2}  =  {( - 4 - 0)}^{2} +  {(3 - y)}^{2}   }}

{ \sf{36 + 25 +  {y}^{2}  - 10y = 16 + 9 +  {y}^{2}  - 6y}}

{ \sf{4y = 36}}

 \boxed{ \sf{y = 9}}

So, the required point is (0, 9)

 \underline{ \underline{ \sf{Let's \:  check  \: our  \: solution:}}}

 \implies{ \sf{AP =  \sqrt{ {(6 - 0)}^{2} +  {(5 - 9)}^{2}  } }}

{ \sf{AP =  \sqrt{36  + 16} =  \sqrt{52}  }}

 \implies{ \sf{BP =  \sqrt{ {( - 4 - 0)}^{2} +  {(3 - 9)}^{2}  } }}

{ \sf{BP =  \sqrt{16 + 36} =  \sqrt{52}  }}

{ \therefore{ \sf{ \pink{(0, 9)  \: is  \: equidistant  \: from \:  (6, 5) \:  and  \: (4, 3)}}}}

Similar questions
Math, 11 months ago