EXERCISE 13B
1. If a cos + b sin 0 = m and a sin 0-bcos O = n, prove that
(m² +n²) = (a² +b²).
Answers
Answered by
8
Explanation:
[HERE IT WILL BE Θ INSTEAD OF 0].
Accordingly,
By squaring and adding LHS and RHS of both the equations.
(a cosΘ + b sinΘ)² + (a sinΘ - b cosΘ)² = m² + n²
⇒ (a²cos²Θ + b²sin²Θ +2ab cosΘsinΘ) + (a²sin²Θ + b²cos²-2abcosΘsinΘ) =m²+n².
⇒ a²(cos²Θ + sin²Θ) + b²(cos²Θ + sin²Θ) = m²+n²
⇒ a² + b² = m²+n². [By Formula cos²Θ + sin²Θ = 1]
Proved.
Similar questions