explain the principles of integrated physical education
Answers
Answered by
0
First you need to pick an axis to integrate to. Do you want to find the area under the curve (x-axis) or next to the curve (y-axis). Next you need to pick you limits. Where does your area go between? 5 and 7? -21 and 2.4? 0 and ∞? Once you have your limits and your axis of choice you can set it all out nice and neat in integral form so it looks something like this
(1) 
a and b are your limits, how big your area is, which numbers it’s going between. Now say you’ve decided to integrate some horrible equation to find its area. And you’ve decided to work to the x-axis between 0 and 7, like so
Graph that we will be integrating to find the area under the curve.
What integrating does is basically split it into loads of little bits and add them up e.g. one of the little bits of the graph would be this
Now the ‘area’ of this bit is just 12. You just assume that it has such a small width that is doesn’t matter and just count the height. So you do this all the way along. The thinner your lines the better your result, so you would also have
and all others in between your two limits (in this case 0 and 7). Integrating does this for you. It takes into account an infinite number of strips all with 0 width and allows you to work out the total area. So let’s go back to the integral (equation 1)
(2) 
The curly bit in front of the integral is just like a stretched s and it basically stands for “sum” because what you’re doing is adding up all the little bits. The .dx bit in the integral is just there to show you that you are adding up all the bits along the x-axis. d”something” in maths nearly always means “a small change in something”.
So between the big s with your limits and the .dx bit at the end you have your f(x). Now you may not be familiar with this notation so I’ll explain. f(x) this is just some function of x. f(x) just means this is where you put your function of x, be it sin(x), x2+23, or whatever, just something where it’s the x that’s changing. If you had y=x3+3x+4 then your f(x) is just x3+3x+4, that’s your function.
(1) 
a and b are your limits, how big your area is, which numbers it’s going between. Now say you’ve decided to integrate some horrible equation to find its area. And you’ve decided to work to the x-axis between 0 and 7, like so
Graph that we will be integrating to find the area under the curve.
What integrating does is basically split it into loads of little bits and add them up e.g. one of the little bits of the graph would be this
Now the ‘area’ of this bit is just 12. You just assume that it has such a small width that is doesn’t matter and just count the height. So you do this all the way along. The thinner your lines the better your result, so you would also have
and all others in between your two limits (in this case 0 and 7). Integrating does this for you. It takes into account an infinite number of strips all with 0 width and allows you to work out the total area. So let’s go back to the integral (equation 1)
(2) 
The curly bit in front of the integral is just like a stretched s and it basically stands for “sum” because what you’re doing is adding up all the little bits. The .dx bit in the integral is just there to show you that you are adding up all the bits along the x-axis. d”something” in maths nearly always means “a small change in something”.
So between the big s with your limits and the .dx bit at the end you have your f(x). Now you may not be familiar with this notation so I’ll explain. f(x) this is just some function of x. f(x) just means this is where you put your function of x, be it sin(x), x2+23, or whatever, just something where it’s the x that’s changing. If you had y=x3+3x+4 then your f(x) is just x3+3x+4, that’s your function.
Answered by
0
The principles of integrated physical education is to organize the plot of educational principles.
Explanation:
According to the principles of integrated physical education, the educational principles are supposed to organize on a plot properly. It is in regards to the structure of syllabus and grades with the consultants of other teachers and experts.
The activities and games which include physical activities must be introduced to the students. The importance of learning must be taught to the students and there must be work on the development of ethics and values in terms of social influence in the students
Similar questions