Explain the reaction of metals with oxygen in terms of oxidation and reduction
Answers
Answer:
Because the metals have lost electrons to oxygen, they have been oxidized; oxidation is therefore the loss of electrons. Conversely, because the oxygen atoms have gained electrons, they have been reduced, so reduction is the gain of electrons. For every oxidation, there must be an associated reduction. Therefore, these reactions are known as oxidation-reduction reactions, or "redox" reactions for short.
PLEASE MARK THE BRAINLIEST IF FOUND USEFUL!
Answer:
Originally, the term reduction referred to the decrease in mass observed when a metal oxide was heated with carbon monoxide, a reaction that was widely used to extract metals from their ores. When solid copper(I) oxide is heated with hydrogen, for example, its mass decreases because the formation of pure copper is accompanied by the loss of oxygen atoms as a volatile product (water vapor). The reaction is as follows:
Cu2O(s)+H2(g)→2Cu(s)+H2O(g)
Oxidation-reduction reactions are now defined as reactions that exhibit a change in the oxidation states of one or more elements in the reactants by a transfer of electrons, which follows the mnemonic "oxidation is loss, reduction is gain", or "oil rig". The oxidation state of each atom in a compound is the charge an atom would have if all its bonding electrons were transferred to the atom with the greater attraction for electrons. Atoms in their elemental form, such as O2 or H2, are assigned an oxidation state of zero. For example, the reaction of aluminum with oxygen to produce aluminum oxide is
4Al(s)+3O2→2Al2O3(s)
Each neutral oxygen atom gains two electrons and becomes negatively charged, forming an oxide ion; thus, oxygen has an oxidation state of −2 in the product and has been reduced. Each neutral aluminum atom loses three electrons to produce an aluminum ion with an oxidation state of +3 in the product, so aluminum has been oxidized. In the formation of Al2O3, electrons are transferred as follows (the small overset number emphasizes the oxidation state of the elements):
4Al0+3O20→4Al3++6O2
Equation 4.4.1 and Equation 4.4.2 are examples of oxidation–reduction (redox) reactions. In redox reactions, there is a net transfer of electrons from one reactant to another. In any redox reaction, the total number of electrons lost must equal the total of electrons gained to preserve electrical neutrality. In Equation 4.4.3 , for example, the total number of electrons lost by aluminum is equal to the total number gained by oxygen:
electrons lost=4Alatoms×3e−lostAlatom=12e−lost
electrons gained=6Oatoms×2e−gainedOatom=12e−gained
hope it helped you have a good day