Express (cos θ - sin θ) as a cosine of an angle.
Answers
Answered by
57
(cosθ - sinθ) = √2(1/√2 . cosθ - 1/√2. sinθ)
we know, cos45° = 1/√2
and sin45° = 1/√2
= 2(cos45° . cosθ - sin45° . sinθ)
we know, formula cos(A + B) = cosA.cosB - sinA. sinB
so, cos45° . cosθ - sin45° . sinθ = cos(45° + θ)
hence, (cosθ - sinθ) = √2cos(45° + θ)
we know, cos45° = 1/√2
and sin45° = 1/√2
= 2(cos45° . cosθ - sin45° . sinθ)
we know, formula cos(A + B) = cosA.cosB - sinA. sinB
so, cos45° . cosθ - sin45° . sinθ = cos(45° + θ)
hence, (cosθ - sinθ) = √2cos(45° + θ)
Answered by
22
Answer:
Step-by-step explanation:
Best explanation
Attachments:
Similar questions