Evaluate ; if none of cos A, cos B and cos C is zero.
Answers
Answered by
2
Please see the attachment
Attachments:
Answered by
1
Answer:
∑ Sin(A + B)Sin(A-B) / (cos²A.cos²B) = 0
Step-by-step explanation:
∑ Sin(A + B)Sin(A-B) / (cos²A.cos²B)
Sin(A + B)Sin(A-B)
using Sin(A + B) = SinACosB + CosASinB
& Sin(A - B) = SinACosB - CosASinB
= (SinACosB + CosASinB)(SinACosB - CosASinB)
= Sin²ACos²B - Cos²ASin²B
∑ Sin(A + B)Sin(A-B) / (cos²A.cos²B)
= ∑ (Sin²ACos²B - Cos²ASin²B)/ (cos²A.cos²B)
= ∑ (Sin²ACos²B(cos²A.cos²B) - Cos²ASin²B/(cos²A.cos²B))
= ∑ (Tan²A - Tan²B)
= Tan²A - Tan²B + Tan²B - Tan²C + Tan²C - Tan²A
= 0
∑ Sin(A + B)Sin(A-B) / (cos²A.cos²B) = 0
Similar questions