Prove that tan 72° = tan 18° + tan 54°
Answers
Answered by
9
we have to prove that tan72° = tan18° + 2tan54° [ you did mistake in typing ]
we know, tan(A - B) = (tanA - tanB)/(1 + tanA. tanB)
tan54° = tan(72° - 18°)
or, tan54° = (tan72° - tan18°)/(1 + tan72°. tan18°)
or, tan54°(1 + tan72°. tan18°) = tan72° - tan18°
we know, tan72° = tan(90° - 18°) = cot18°
or, tan54°(1 + cot18°. tan18°) = tan72° - tan18°
or, tan54° (1 + 1 ) = tan72° - tan18°
or, 2tan54° = tan72° - tan18°
hence, tan72° = tan18° + 2tan54°
LHS = RHS
we know, tan(A - B) = (tanA - tanB)/(1 + tanA. tanB)
tan54° = tan(72° - 18°)
or, tan54° = (tan72° - tan18°)/(1 + tan72°. tan18°)
or, tan54°(1 + tan72°. tan18°) = tan72° - tan18°
we know, tan72° = tan(90° - 18°) = cot18°
or, tan54°(1 + cot18°. tan18°) = tan72° - tan18°
or, tan54° (1 + 1 ) = tan72° - tan18°
or, 2tan54° = tan72° - tan18°
hence, tan72° = tan18° + 2tan54°
LHS = RHS
Answered by
8
HELLO DEAR,
IT SEEMS THERE IS SOME TYPING MISTAKE
YOUR QUESTIONS SHOULD BE tan72° = tan18° + 2tan54°
we know:-
tan(A - B) = (tanA - tanB)/(1 + tanA. tanB)
tan72° = tan(90° - 18°) = cot18°
tan54° = tan(72° - 18°)
=> tan54° = (tan72° - tan18°)/(1 + tan72°. tan18°)
=> tan54°(1 + tan72°. tan18°) = tan72° - tan18°
=> tan54°(1 + cot18°. tan18°) = tan72° - tan18°
=> tan54° (1 + 1 ) = tan72° - tan18°
=> 2tan54° = tan72° - tan18°
hence, tan72° = tan18° + 2tan54°
I HOPE IT'S HELP YOU DEAR,
THANKS
IT SEEMS THERE IS SOME TYPING MISTAKE
YOUR QUESTIONS SHOULD BE tan72° = tan18° + 2tan54°
we know:-
tan(A - B) = (tanA - tanB)/(1 + tanA. tanB)
tan72° = tan(90° - 18°) = cot18°
tan54° = tan(72° - 18°)
=> tan54° = (tan72° - tan18°)/(1 + tan72°. tan18°)
=> tan54°(1 + tan72°. tan18°) = tan72° - tan18°
=> tan54°(1 + cot18°. tan18°) = tan72° - tan18°
=> tan54° (1 + 1 ) = tan72° - tan18°
=> 2tan54° = tan72° - tan18°
hence, tan72° = tan18° + 2tan54°
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions
Math,
6 months ago
Social Sciences,
6 months ago