Math, asked by AjayT9951, 1 year ago

Express in simplest form: sin-1[3x – 4x3]

Answers

Answered by MaheswariS
6

\textbf{Given:}

sin^{-1}(3x-4x^3)

\text{Take $x=sin\theta$}

\implies\,\theta=sin^{-1}x

\text{Now,}

sin^{-1}(3x-4x^3)

=sin^{-1}(3sin\theta-4sin^3\theta)

\text{Using,}

\boxed{\bf\,sin3A=3sinA-4\,sin^3A}

=sin^{-1}(sin3\theta)

\text{We know that}

\boxed{\bf\,sin^{-1}(sinx)=x}

=3\theta

=3\,sin^{-1}x

\therefore\textbf{The simplest form of $\bf\,sin^{-1}(3x-4x^3)$ is $\bf\,3\,sin^{-1}x$}

Find more:

2cot inverse(7)+cos inverse (3/5)

https://brainly.in/question/3447900#

Similar questions