Math, asked by sailithinkondle, 2 months ago

express tan^-1(cosx+sinx/cosx-sinx)in the simplest form

Answers

Answered by Anonymous
104

\implies\bf{ \frac{\pi}{4} - x }

Explanation

\implies\sf{ {\tan}^{ - 1}(\frac{\cos\:x +  \sin \: x}{\cos\:x  - \sin \: x})}

\implies\sf{{ \tan }^{ - 1}( \frac{ \frac{ \cos \: x -  \sin \: x }{ \cos  \: x} }{ \frac{ \cos \: x +  \sin \: x  }{ \cos \: x } })}

\implies\sf{ \frac{ \cancel{\frac{ \cos \: x }{ \cos \: x}} -  \frac{ \sin \: x }{ \cos \: x }  }{  \cancel{\frac{ \cos \: x}{ \cos \: x}} +  \frac{ \sin \: x }{ \cos \: x}   }}

\implies\sf{ { \tan }^{ - 1}( \frac{1 -  \tan \: x }{1 +  \tan \: x }) }

\implies\sf{ { \tan }^{ - 1}( \frac{1 -  \tan \: x}{1 + 1  \times  \tan \: x }) }

\implies\sf{ { \tan }^{ - 1}( \frac{ \tan \frac{\pi}{4} -  \tan \: x   }{1 +   \tan\frac{\pi}{4}  \times  \tan \: x })  }

\implies\sf{\cancel{{ \tan }^{ - 1}\{\tan}( \frac{\pi}{4} - x)\}}

\implies\boxed{\bf{ \frac{\pi}{4} - x }}

Identities used

\diamond\boxed{\bf{\frac{\cos\:x-\sin\:x}{\cos\:x+\sin\:x}=\tan}}\diamond\boxed{\bf{tan(x-y)\frac{\tan\:x-\tan\:y}{1+\tan\:x\tan\:y}}}\diamond\boxed{\bf{\tan\frac{\pi}{4}=1}}

Hope it helps!!

Similar questions