Express as a sine of an angle.
Answers
Answered by
2
it is given that, (√3 cos25° + sin25°)/2
= [ (√3/2). cos25° + (1/2). sin25° ]
we know, sin60° = √3/2 and cos60° = 1/2
so, [ (√3/2). cos25° + (1/2). sin25° ] = [ sin60°. cos25° + cos60° . sin25° ]
we know, sinA.cosB + cosA.sinB = sin(A + B)
so, [ sin60°. cos25° + cos60° . sin25° ] = sin(60° + 25°)
= sin85°
= [ (√3/2). cos25° + (1/2). sin25° ]
we know, sin60° = √3/2 and cos60° = 1/2
so, [ (√3/2). cos25° + (1/2). sin25° ] = [ sin60°. cos25° + cos60° . sin25° ]
we know, sinA.cosB + cosA.sinB = sin(A + B)
so, [ sin60°. cos25° + cos60° . sin25° ] = sin(60° + 25°)
= sin85°
Answered by
0
given:-
(√3 cos25° + sin25°)/2
= [ (√3/2). cos25° + (1/2). sin25° ]
we know;-
sin60° = √3/2 and cos60° = 1/2
sinA.cosB + cosA.sinB = sin(A + B)
so, [ (√3/2). cos25° + (1/2). sin25° ] = [ sin60°. cos25° + cos60° . sin25° ]
so, [ sin60°. cos25° + cos60° . sin25° ] = sin(60° + 25°)
= sin85°
(√3 cos25° + sin25°)/2
= [ (√3/2). cos25° + (1/2). sin25° ]
we know;-
sin60° = √3/2 and cos60° = 1/2
sinA.cosB + cosA.sinB = sin(A + B)
so, [ (√3/2). cos25° + (1/2). sin25° ] = [ sin60°. cos25° + cos60° . sin25° ]
so, [ sin60°. cos25° + cos60° . sin25° ] = sin(60° + 25°)
= sin85°
Similar questions