If tan θ = and θ is in the third quadrant, find θ.
Answers
Answered by
4
it is given that, tanθ = (cos11° + sin11°)/(cos11° - sin11°)
we know, sin(90° - x) = cosx
and cos(90° - x) = sinx
so, cos11° = cos(90° - 79°) = sin79°
sin11° = sin(90° - 79°) = cos79°
tanθ = (sin79° + sin11°)/(cos11° - cos79°)
now use formula,
sinC + sinD = 2sin(C + D)/2.cos(C - D)/2
cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
tanθ = {2sin(11° + 79°)/2.cos(79° - 11°)/2}{2sin(11° + 79°)/2.sin(79° - 11°)/2}
= {2sin45° cos34°}/{2sin45° sin34°}
= cot34° = cot(270° - 236°) = tan236° [ because θ lies in 3rd quadrant ]
tanθ = tan 236°
θ = 236°
we know, sin(90° - x) = cosx
and cos(90° - x) = sinx
so, cos11° = cos(90° - 79°) = sin79°
sin11° = sin(90° - 79°) = cos79°
tanθ = (sin79° + sin11°)/(cos11° - cos79°)
now use formula,
sinC + sinD = 2sin(C + D)/2.cos(C - D)/2
cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
tanθ = {2sin(11° + 79°)/2.cos(79° - 11°)/2}{2sin(11° + 79°)/2.sin(79° - 11°)/2}
= {2sin45° cos34°}/{2sin45° sin34°}
= cot34° = cot(270° - 236°) = tan236° [ because θ lies in 3rd quadrant ]
tanθ = tan 236°
θ = 236°
Answered by
5
Answer: The answer is θ = 236
Explanation:
Dividing Numerator & Denominator by Cos11, We get
∵ tan45 = 1 ( so putting 1 = tan45 , we get)
So Reference Angle = 56 It is for Quadrant ONE.
⇒ But given that θ lies in Third Quadrant.
⇒ So for 3rd quadrant
θ = 180 + Reference Angle
θ = 180 + 56
θ = 236
Similar questions