Math, asked by PragyaTbia, 1 year ago

Express the given equation in the form of a + ib, a, b ∈ R i=\sqrt{-1}. State the values of a and b.
\frac{3+2i}{2-5i}+\frac{3-2i}{2+5i}

Answers

Answered by hukam0685
5
To express the given complex number in the form of a+ib,
let add both the numbers

\frac{3+2i}{2-5i}+\frac{3-2i}{2+5i} \\  \\  =  \frac{(3 + 2i)(2 + 5i) + (3 - 2i)(2 - 5i)}{(2 - 5i)(2 + 5i)}  \\  \\  =  \frac{6 + 15i + 4i + 10 {i}^{2} + 6 - 15i - 4i + 10 {i}^{2}  }{( {2)}^{2}  - ( {5i)}^{2} }  \\  \\   = \frac{12 + 20 {i}^{2} }{4 + 25}  \\  \\  =  \frac{12 - 20}{29}  \\  \\  =  \frac{ - 8}{29}  \\  \\ so \\  \\ a + ib =  \frac{ - 8}{29}  + 0i \\  \\ a =  \frac{ - 8}{29}  \\  \\ b = 0 \\  \\
Hope it helps you.
Similar questions