Math, asked by PragyaTbia, 1 year ago

Express the given equation in the form of a + ib, a, b ∈ R i=\sqrt{-1}. State the values of a and b.
\frac{4i^{8}-3i^{9}+3}{3i^{11}-4i^{10}-2}

Answers

Answered by hukam0685
5
As we know that

 \sqrt{ - 1}  = i \\  \\  {i}^{2}  =  - 1 \\  \\  {i}^{4}  = 1 \\  \\  {i}^{3}  =  - i \\  \\
\frac{4i^{8}-3i^{9}+3}{3i^{11}-4i^{10}-2} \\  \\ \frac{4( { {i}^{4} )}^{2} -3i^{(2 \times 4 + 1)}+3}{3i^{4 \times 2 + 3}-4i^{4 \times 2 + 2}-2} \\  \\  =  \frac{4 - 3i + 3}{3 {i}^{3} - 4 {i}^{2}   - 2}  \\  \\  =  \frac{7 - 3i}{ - 3i + 4 - 2}  \\  \\  = \frac{7 - 3i}{ 2 - 3i}  \\  \\  rationalise \: the \: denominator \\  \\ = \frac{7 - 3i}{ 2 - 3i} \times  \frac{(2 + 3i)}{(2 + 3i)}  \\  \\  =  \frac{14 + 21i - 6i + 9}{4 + 9}  \\  \\  =  \frac{23 + 15i}{13}  \\  \\ a + ib =  \frac{23}{13}  + i \frac{15}{13}  \\  \\ a = \frac{23}{13} \\  \\ b =  \frac{15}{13}  \\  \\
Hope it helps you.
Similar questions