Math, asked by PragyaTbia, 1 year ago

Express the given equation in the form of a + ib, a, b ∈ R i=\sqrt{-1}. State the values of a and b.
\frac{2+\sqrt{-3}}{4+\sqrt{-3}}

Answers

Answered by hukam0685
1
As we know that

 \sqrt{ - 1}  = i \\  \\  {i}^{2}  =  - 1 \\  \\
\frac{2+\sqrt{-3}}{4+\sqrt{-3}} \\  \\  = \frac{2+i\sqrt{3}}{4+i\sqrt{3}} \times  \frac{4 - i \sqrt{3} }{4 - i \sqrt{3} }  \\  \\  =  \frac{8 - 2i \sqrt{3} + 4i \sqrt{3}  - 3 {i}^{2}  }{( {4)}^{2}  - ( {i \sqrt{3}) }^{2} }  \\  \\  =  \frac{8 + 3 + 2i \sqrt{3} }{16 + 3}  \\  \\  =  \frac{11 + 2i \sqrt{3} }{19}  \\  \\ a + ib =  \frac{11}{19}  + i \frac{2 \sqrt{3} }{19}  \\  \\ a =  \frac{11}{19}  \\  \\ b =  \frac{2 \sqrt{3} }{19}  \\  \\
Hope it helps you.
Similar questions