Factorisation using identities
Answers
Answered by
3
ANSWER✔
___________
Answered by
1
(3x+2y)^2 (3x)^2+(2y)^2+2(3x)(2y){a^2+b^2+2ab} 9x^2+4y^2+12xy
⋆(3x+2y)
2
⟹(3x)
2
+(2y)
2
+2(3x)(2y)−−−
a
2
+b
2
+2ab
⟹9x
2
+4y
2
+12xy
9x
2
+4y
2
+12xy
(xy-2)^2(xy)^2+(2)^2-2(xy)(2)a^2+b^2-2ab x^2y^2+4-4xy
⋆(xy−2)
2
⟹(xy)
2
+(2)
2
−2(xy)(2)−−
a
2
+b
2
−2ab
⟹x
2
y
2
+4−4xy
x
2
y
2
+4−4xy
(x-7)^2(x)^2+(7)^2-2(x)(7)a^2+b^2-2ab x^2+49-14x\
⋆(x−7)
2
⟹(x)
2
+(7)
2
−2(x)(7)−−−
a
2
+b
2
−2ab
⟹x
2
+49−14x
x
2
−14x+49
49-x^2 7^2-x^2
(7+x)(7-x)
a^2-b^2= (a+b)(a-b)
49−x
2
⟹7
2
−x
2
⟹(7+x)(7−x)−−
a
2
−b
2
=(a+b)(a−b)
(x+7)(x-7)
(x+7)(x−7)
121x^2-81
(11x)^2-(9)^2
(11x+9)(11x-9) { a^2-b^2= (a+b)(a-b)}
⋆121x
2
−81
⟹(11x)
2
−(9)
2
⟹(11x+9)(11x−9)−−
a
2
−b
2
=(a+b)(a−b)
(11x+9)(11x-9)
(11x+9)(11x−9)
Similar questions