Factorise 25a2-4b2+28bc-49c2
Answers
Answered by
21
Answer:
(5a+2b-7c)(5a-2b+7c)
Explanation:
25a²-4b²+28bc-49c²
= 25a²-(4b²-28bc+49c²)
= (5a)²- [ (2b)²-2*2b*7c+(7c)²]
= (5a)² - (2b-7c)²
[tex]\boxed {x^{2}-y^{2}=(x+y)\times(x-y)}[\tex]
= [5a+(2b-7c)][5a-(2b-7c)]
= (5a+2b-7c)(5a-2b+7c)
••••
(5a+2b-7c)(5a-2b+7c)
Explanation:
25a²-4b²+28bc-49c²
= 25a²-(4b²-28bc+49c²)
= (5a)²- [ (2b)²-2*2b*7c+(7c)²]
= (5a)² - (2b-7c)²
[tex]\boxed {x^{2}-y^{2}=(x+y)\times(x-y)}[\tex]
= [5a+(2b-7c)][5a-(2b-7c)]
= (5a+2b-7c)(5a-2b+7c)
••••
Answered by
15
Factorise = 25a^2 - 4b^2 + 28bc - 49c^2
= 5a² - 4b² + 28bc - 49c²
= 25a² - (4b² - 28bc + 49c²)
Here we get
= (5a)²- (2b)²- 2 × 2b × 7c + (7c)²
= (5a)² - (2b - 7c)²
Using Identity we get
= x^2 - y^2 = (x + y)(x - y)
= 5a + (2b - 7c)(5a - (2b - 7c)
Similar questions