Math, asked by lelandnightmaresaten, 8 months ago

factorise:64a^6—b^6​

Answers

Answered by aads123
2

Answer:

kjeqarhkedwqkbedakjhkdsfhisdmkfshefskfdsasjfdo

answer is a3-b3-c3-d3

gfhgfhk

Step-by-step explanation:

Answered by shreyagour2105
1

Step-by-step explanation:

= 64(a)^6 - (b)^6

= ( 2 )^6 ( a )^6 - ( b )^6

Using identity :

[ a^m × b^m = ( ab )^m ]

= ( 2a )^6 - ( b )^6

= [ ( 2a )^3 ]^2 - [ b^3 ]^2

Using identity :

[ a^2 - b^2 = ( a + b ) ( a - b ) ]

= [ ( 2a )^3 + b^3 ] [ ( 2a )^3 - b^3 ]

Using identity :

[ a^3 + b^3 = ( a + b ) ( a^2 + b^2 - ab )

= ( 2a + b ) { ( 2a )^2 + b^2 - 2a × b } [ ( 2a )^3 - b^3 ]

= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) [ ( 2a )^3 - b^3 ]

Using identity :

[ a^3 - b^3 = ( a - b ) ( a^2 + b^2 + ab )

= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) ( 2a - b ) [ ( 2a )^2 + b^2 + 2a × b ]

= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) ( 2a - b ) ( 4a^2 + b^2 + 2ab )

Arranging the terms ,

= ( 2a + b ) ( 2a - b ) ( 4a^2 + b^2 - 2ab ) ( 4a^2 + b^2 + 2ab )

Similar questions