Math, asked by aspjd, 10 months ago

factorise 8 a cube minus b cube minus 12 a square b + 6 a b square​

Answers

Answered by BrainlyRaaz
47

 \bold{\bf{\underline{\underline{Answer:}}}}

 \bold {\bf {∴\:(2a + b) (2a + b) (2a + b)} \:are\:the\:factors.}

 \bold{\underline {Given:}}

⟹ {8a}^{3} - {b}^{3} - {12a}^{2}b + 6a{b}^{2}

 \bold{\underline {To\:Find:}}

 {⟹}\:Factorise\: the \:given\: equation=\:?

 \bold{\bf{\underline{\underline{Step \:by\: step \:explaination :}}}}

⟹ {{8a}^{3}} - {{b} ^{3}} - {{12a}^{2}b} + {6a{b}^{2}}

 \bf{By, {(a + b)}^{3}= {a} ^{3} + {3a}^{2}b + 3a{b}^{2} + {b}^{3}}

 \bf{Now,}

⟹  {{8a}^{3}} - {{b} ^{3}} - {{12a}^{2}}b + {6a{b}^{2}}

⟹  {{2a}^{3}} - {{b}^{3}} + 3 × {{2a}^{3}} b+ 3 × 2a{{b}^{3}}

 \bf{According \:to\: above \:identity\:⟹}

⟹ {(2a + b)}^{3}

⟹ {(2a + b)}^{3} \:{(2a + b)}^{3} \:{(2a + b)}^{3}

\bf{Hence, {(2a + b)}^{3}\:{(2a + b)}^{3}\:{(2a + b)}^{3} are\: the\: factors.}

 <h3>#Be_Brainly</h3>

Answered by RonakMangal
9

Answer:

mark as brainliest please

Attachments:
Similar questions