Factorise 9 (b+2a)square-4asquare
Answers
Factorise:
9( b + 2a )² - (4)²
Solution:
= 3² ( b + 2a )² - (4)²
[ by using : a² × b² = (ab)² ]
= {3(b + 2a}² - ( 4 )²
= ( 3b + 6a )² - ( 4 )²
[ by using : ( a )² - ( b )² = ( a + b )( a - b ) ]
= { (3b + 6a) + 4 } { (3b + 6a) - 4 }
= ( 3b + 6a + 4) ( 3b + 6a - 4 )
( 3b + 6a + 4 ) ( 3b + 6a - 4) is the factorised form.
More:
Factorisation mean expressing an expression as a product of its factors. What is the practical use of the factorisation we did just now? One possible practical use is: let the given expression be the area of a rectangle, then we could factorise it to find the sides of the rectangle.
Factorise:
Factorise:9( b + 2a )² - (4)²
Factorise:9( b + 2a )² - (4)²Solution:
Factorise:9( b + 2a )² - (4)²Solution:= 3² ( b + 2a )² - (4)²
Factorise:9( b + 2a )² - (4)²Solution:= 3² ( b + 2a )² - (4)²[ by using : a² × b² = (ab)² ]
Factorise:9( b + 2a )² - (4)²Solution:= 3² ( b + 2a )² - (4)²[ by using : a² × b² = (ab)² ]= {3(b + 2a}² - ( 4 )²
Factorise:9( b + 2a )² - (4)²Solution:= 3² ( b + 2a )² - (4)²[ by using : a² × b² = (ab)² ]= {3(b + 2a}² - ( 4 )²= ( 3b + 6a )² - ( 4 )²
Factorise:9( b + 2a )² - (4)²Solution:= 3² ( b + 2a )² - (4)²[ by using : a² × b² = (ab)² ]= {3(b + 2a}² - ( 4 )²= ( 3b + 6a )² - ( 4 )²[ by using : ( a )² - ( b )² = ( a + b )( a - b ) ]
Factorise:9( b + 2a )² - (4)²Solution:= 3² ( b + 2a )² - (4)²[ by using : a² × b² = (ab)² ]= {3(b + 2a}² - ( 4 )²= ( 3b + 6a )² - ( 4 )²[ by using : ( a )² - ( b )² = ( a + b )( a - b ) ]= { (3b + 6a) + 4 } { (3b + 6a) - 4 }
Factorise:9( b + 2a )² - (4)²Solution:= 3² ( b + 2a )² - (4)²[ by using : a² × b² = (ab)² ]= {3(b + 2a}² - ( 4 )²= ( 3b + 6a )² - ( 4 )²[ by using : ( a )² - ( b )² = ( a + b )( a - b ) ]= { (3b + 6a) + 4 } { (3b + 6a) - 4 }= ( 3b + 6a + 4) ( 3b + 6a - 4 )