Math, asked by KasishPilan2017, 1 year ago

Factorise
 {a}^{12} {y}^{4}  -  {a}^{4} {y}^{12}

Answers

Answered by adianshu1
1
Find the Greatest Common Factor (GCF)

How?


GCF=a4y4GCF={a}^{4}{y}^{4}GCF=a​4​​y​4​​


2

 

Factor out the GCF (Write the GCF first. Then, in parentheses, divide each term by the GCF.)

a4y4(a12y4a4y4+−a4y12a4y4){a}^{4}{y}^{4}(\frac{{a}^{12}{y}^{4}}{{a}^{4}{y}^{4}}+\frac{-{a}^{4}{y}^{12}}{{a}^{4}{y}^{4}})a​4​​y​4​​(​a​4​​y​4​​​​a​12​​y​4​​​​+​a​4​​y​4​​​​−a​4​​y​12​​​​)


3

 

Simplify each term in parentheses

a4y4(a8−y8){a}^{4}{y}^{4}({a}^{8}-{y}^{8})a​4​​y​4​​(a​8​​−y​8​​)


4

 

Rewrite a8−y8{a}^{8}-{y}^{8}a​8​​−y​8​​ in the form a2−b2{a}^{2}-{b}^{2}a​2​​−b​2​​, where a=a4a={a}^{4}a=a​4​​ and b=y4b={y}^{4}b=y​4​​

a4y4((a4)2−(y4)2){a}^{4}{y}^{4}({({a}^{4})}^{2}-{({y}^{4})}^{2})a​4​​y​4​​((a​4​​)​2​​−(y​4​​)​2​​)


5

 

Use Difference of Squares: a2−b2=(a+b)(a−b){a}^{2}-{b}^{2}=(a+b)(a-b)a​2​​−b​2​​=(a+b)(a−b)

a4y4(a4+y4)(a4−y4){a}^{4}{y}^{4}({a}^{4}+{y}^{4})({a}^{4}-{y}^{4})a​4​​y​4​​(a​4​​+y​4​​)(a​4​​−y​4​​)


6

 

Rewrite a4−y4{a}^{4}-{y}^{4}a​4​​−y​4​​ in the form a2−b2{a}^{2}-{b}^{2}a​2​​−b​2​​, where a=a2a={a}^{2}a=a​2​​ and b=y2b={y}^{2}b=y​2​​

a4y4(a4+y4)((a2)2−(y2)2){a}^{4}{y}^{4}({a}^{4}+{y}^{4})({({a}^{2})}^{2}-{({y}^{2})}^{2})a​4​​y​4​​(a​4​​+y​4​​)((a​2​​)​2​​−(y​2​​)​2​​)


7

 

Use Difference of Squares: a2−b2=(a+b)(a−b){a}^{2}-{b}^{2}=(a+b)(a-b)a​2​​−b​2​​=(a+b)(a−b)

a4y4(a4+y4)(a2+y2)(a2−y2){a}^{4}{y}^{4}({a}^{4}+{y}^{4})({a}^{2}+{y}^{2})({a}^{2}-{y}^{2})a​4​​y​4​​(a​4​​+y​4​​)(a​2​​+y​2​​)(a​2​​−y​2​​)


8

 

Use Difference of Squares: a2−b2=(a+b)(a−b){a}^{2}-{b}^{2}=(a+b)(a-b)a​2​​−b​2​​=(a+b)(a−b)

a4y4(a4+y4)(a2+y2)(a+y)(a−y){a}^{4}{y}^{4}({a}^{4}+{y}^{4})({a}^{2}+{y}^{2})(a+y)(a-y)a​4​​y​4​​(a​4​​+y​4​​)(a​2​​+y​2​​)(a+y)(a−y)



KasishPilan2017: thanx
Similar questions