Factorise:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Factorise by completing the square method
Add and subtract (b/2)²:
Complete the square:
Evaluate the terms outside the bracket:
Answered by
1
Solution :
Given quadratic expression :
x² - 5x + 25/4
Splitting the middle term , we get
= x² - 5x/2 - 5x/2 + 25/4
= x( x - 5/2 ) - 5/2 ( x - 5/2 )
= ( x - 5/2 )( x - 5/2 )
_________________
Or
x² - 5x + 25/4
= x² - 2*x*5/2 + ( 5/2 )²
*****************************
We know the algebraic identity:
a² - 2ab + b² = ( a - b )²
*****************************
= ( x - 5/2 )²
= ( x - 5/2 )( x - 5/2 )
•••••
Given quadratic expression :
x² - 5x + 25/4
Splitting the middle term , we get
= x² - 5x/2 - 5x/2 + 25/4
= x( x - 5/2 ) - 5/2 ( x - 5/2 )
= ( x - 5/2 )( x - 5/2 )
_________________
Or
x² - 5x + 25/4
= x² - 2*x*5/2 + ( 5/2 )²
*****************************
We know the algebraic identity:
a² - 2ab + b² = ( a - b )²
*****************************
= ( x - 5/2 )²
= ( x - 5/2 )( x - 5/2 )
•••••
Similar questions