Math, asked by Gigimoanpk764, 1 year ago

Factorise:  x^2-5x+\frac{25}{4}

Answers

Answered by TooFree
0

Answer:

\bigg(x - \dfrac{5}{2} \bigg)^2


Step-by-step explanation:

x^2-5x+\dfrac{25}{4}


Factorise by completing the square method


Add and subtract (b/2)²:

=x^2-5x + \bigg(\dfrac{5}{2} \bigg)^2 - \bigg(\dfrac{5}{2} \bigg)^2 + \dfrac{25}{4}


Complete the square:

= \bigg(x - \dfrac{5}{2} \bigg)^2 - \dfrac{25}{4} + \dfrac{25}{4}


Evaluate the terms outside the bracket:

= \bigg(x - \dfrac{5}{2} \bigg)^2


Answered by mysticd
1
Solution :

Given quadratic expression :

x² - 5x + 25/4

Splitting the middle term , we get

= x² - 5x/2 - 5x/2 + 25/4

= x( x - 5/2 ) - 5/2 ( x - 5/2 )

= ( x - 5/2 )( x - 5/2 )

_________________

Or

x² - 5x + 25/4

= x² - 2*x*5/2 + ( 5/2 )²

*****************************
We know the algebraic identity:

a² - 2ab + b² = ( a - b )²

*****************************
= ( x - 5/2 )²

= ( x - 5/2 )( x - 5/2 )

•••••
Similar questions