Math, asked by Manoranjansahu7847, 1 year ago

The value of  (1-cosec^2A)tan^2A is:
(A) −1
(B) 0
(C) 1
(D) 2

Answers

Answered by VEDULAKRISHNACHAITAN
0

Answer:

-1

Step-by-step explanation:

Hi,

Consider (1 - cosec²A)tan²A

= tan²A - cosec²A.tan²A

= tan²A - (1/sin²A)*(sin²A/cos²A)

= tan²A - 1/cos²A

= sin²A/cos²A - 1/cos²A

= (sin²A - 1)/cos²A

= -(1 - sin²A)/cos²A

= -1 (Since 1 - sin²A = cos²A).

Hope , it helps !


Answered by rohitkumargupta
3

HELLO DEAR,



(1 - cosec²A)tan²A


= tan²A - cosec²A.tan²A


= tan²A - (1/sin²A)×(sin²A/cos²A)


= tan²A - 1/cos²A


= sin²A/cos²A - 1/cos²A


= (sin²A - 1)/cos²A


= -(1 - sin²A)/cos²A


= -cos²A/cos²A (Since 1 - sin²A = cos²A).


= -1



I HOPE IT'S HELP YOU DEAR,

THANKS

Similar questions