Math, asked by Krutartha, 9 months ago

FACTORISE
 {x}^{4}  + 3 {x}^{2}  + 4

Answers

Answered by devraaz170
3

Step-by-step explanation:

 {x}^{4}  + 3 {x}^{2}   -  4 = 0 \\  = >   {( {x}^{2} )}^{2}  + 4 {x}^{2}  -  {x}^{2}   -  4 = 0 \\  =  >  {x}^{2} ( {x}^{2}  + 4) - 1( {x}^{2}  + 4)  = 0\\  =  > ( {x}^{2}  + 4)( {x}^{2}  - 1)

Answered by Cynefin
20

 \huge{ \bold{ \star{ \underline{ \red{ \: Question...}}}}}

✳FACTORISE

 {x}^{4} + 3 {x}^{2} + 4

 \huge{ \bold{ \star{ \underline{ \red{ \: Answer...}}}}}

✏(x2+4)(x+1)(x-1)

 \huge{ \bold{ \star{ \underline{ \red{ Solution...}}}}}

 \large{ \sf{ \mapsto{ \:  \:p(x) =   {x}^{4}  + 3 {x}^{2}  - 4}}} \\  \\  \large{ \green{ \sf{let \: assume \:  {x}^{2} \: be \: \red{a} }}}...... \\  \\  \large{ \sf{ \mapsto{ \: then \:p( {x}^{2})  \: = \:  \:  {a}^{2}  + 3a - 4}}} \\  { \sf{ \purple{ \underline{(\:  {x}^{2}  = a)}}}} \\  \\  \large{ \sf{ \mapsto{ \:  \:   {a}^{2}   +  4a - a - 4}}} \\  { \sf{ \underline{ \purple{by \: middle \: term \: factorization..}}}} \\  \\  \large{ \sf{ \mapsto{a(a + 4) - 1(a + 4)}}} \\  \\  \large{ \sf{ \mapsto{(a + 4)(a - 1)}}} \\  \\  \large{ \sf{ \mapsto{( {x}^{2}  + 4)( {x}^{2}  - 1)}}} \\  \\  \large{ \sf{ \mapsto{ \green{ \boxed{( {x}^{2}  + 4)(x + 1)(x - 1)}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \large{ \bold{ \orange{ \underline{ required \: answer \: is \: ( {x}^{2}  + 4)(x - 1)(x + 1)}}}}

Similar questions