Math, asked by tejalpankhiwala3569, 11 months ago

Factorise the following :
81x^2-90xy + 25y^2

Answers

Answered by rishu6845
19

Answer:

( 9x - 5y ) ( 9x - 5y )

Step-by-step explanation:

Given------> 81 x² - 90 xy + 25y²

To find------> Factors of given expression

Solution-----> 81 x² - 90xy + 25y²

We know that,

81 = 9 × 9

= 9²

25 = 5 × 5

= 5²

90 = 2 × 9 × 5

Now,

81x² - 90xy + 25y²

= 9² x² - 2 × 9 × 5 ( x ) ( y ) + 5² y²

= ( 9x )² - 2 ( 9x ) ( 5y ) + ( 5y )²

We know that,

( a - b )² = a² + b² - 2ab , applying it, we get,

= ( 9x - 5y )²

= ( 9x - 5y ) ( 9x - 5y )

Additional information---->

1) ( a + b )² = a² + b² + 2ab

2) ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

3) ( a² - b² ) = ( a + b ) ( a - b )

4) ( a + b )³ = a³ + b³ + 3ab ( a + b )

5) ( a - b )³ = a³ - b³ - 3ab ( a - b )

Answered by pulakmath007
2

81x² - 90xy + 25y² = (9x - 5y)(9x - 5y)

Given :

The expression 81x² - 90xy + 25y²

To find :

To factorise the expression

Formula :

(a - b)² = a² - 2ab + b²

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is 81x² - 90xy + 25y²

Step 2 of 2 :

Factorise the expression

\displaystyle \sf{ 81 {x}^{2}  - 90xy + 25 {y}^{2}  }

\displaystyle \sf{  =  {(9x)}^{2}  - 2.9x.5y +  {(5y)}^{2}  }

\displaystyle \sf{  =  {(9x - 5y)}^{2}}\:  \:  \: \bigg[ \:  \because \: {(a - b)}^{2} =  {a}^{2}  - 2ab +  {b}^{2}   \bigg]

\displaystyle \sf{   = (9x - 5y)(9x - 5y)}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find factorisation x⁴+2x²+9

https://brainly.in/question/16207943

2. Factorize: x2 – 9y2 + 2x + 1

https://brainly.in/question/50568785

#SPJ3

Similar questions