Math, asked by umaizashaikh01, 4 days ago

factorise using suitable Identity
(x+y)^2 - (x-y)^2​

Answers

Answered by lalith2004ky
1

Answer:

 {(x + y)}^{2}  -  {(x - y)}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  = ( {x}^{2}  +  {y}^{2}  + 2xy) - ( {x}^{2}  +  {y}^{2}  - 2xy) \\  =  {x }^{2}  +  {y}^{2}  + 2xy -  {x}^{2}  -  {y}^{2}  + 2xy  \:  \:  \:  \:  \:  \:  \: \\  = 2xy + 2xy  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  = 4xy \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

(or)

(x + y)² - (x - y)²

= [(x + y) + (x - y)] [(x +y) - (x - y)]

= [ x + y + x - y ] [ x + y - x + y ]

= (2x) (2y)

= 4xy

Identity used: (a + b)(a - b) = a² - b².

Here's the answer to the question.

Answered by govindyadav8245
0

Answer:

(x^2+2xy+y^2) _ ( x^2 _2xy + y^2)

x^2+ 2xy + y^2 _ x^2 + 2xy _ y^2.

2 xy +2xy

4xy ...

Similar questions