Math, asked by mugaliji, 1 year ago

factorise x^3-8x^2+17x-10​

Answers

Answered by Jaat440
90
if \: x = 1

putting \: the \: value \: of \: x \: eq.
x {3} - 8x{2} + 17 - 10 \\ (1){3} - 8(1){2} + 17(1) - 10 \\ 1 - 8 + 17 - 10 \\ 18 - 18 \\ = 0 \\ so \: x = 1 \\ x - 1 \\ \\ x - 1)x {3} - 8x{2} + 17x - 10(x{2} - 7x + 10 \\ \: \: \: \: \: \: \: \: \: \: \: x {3} - x {2} \\ \: \: \: \: \: \: \: \: \: \: - \: \: \: + \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 7x{2} + 17x \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 7x{2} + 7x \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: + \: \: \: \: \: \: \: \: - \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 10x - 10 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 10x - 10 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - \: \: \: \: \: + \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 0 \\

(x-1)(x2-7x+10)
(x-1)(x2-5x-2x+10)
(x-1)[x(x-5)-2(x-5]

(x-1)(x-2)(x-5)
ANSWER

Jaat440: plz mark as brainliest
krishna1934: lop
Answered by sasmitaditya2003
17

Answer:

Polynomials of degree

3

and above can be very difficult to factor.

One trick is to hope for an integer solution.

If an integer solution exists the constant term in the factors must be one of the factors of the constant term of the expression.

In this case the factors of

10

are

±

1

,

±

2

,

±

5

Substituting

1

into the expression

x

3

8

x

+

17

x

10

gives

1

8

+

17

10

=

0

so

x

=

1

is a root and

(

x

1

)

is a factor of this expression.

Using synthetic division to divide

x

3

8

x

2

+

17

x

10

x

1

we get

x

2

7

x

+

10

(sorry I can't see any way to neatly demonstrate synthetic division here)

with obvious factors

(

x

2

)

(

x

5

)

So

(

x

3

8

x

2

+

17

x

10

)

=

(

x

1

)

(

x

2

)

(

x

5

)

Late addition: Here is an image to help explain the synthetic division

enter image source here

Step-by-step explanation:

Similar questions