Math, asked by mukund52, 1 year ago

factorise X square + 1 / x square - 3

Answers

Answered by boffeemadrid
62

Answer:

(x-{\frac{1}{x}}-1)(x+{\frac{1}{x}}+1)

Step-by-step explanation:

The given equation is:

x^2+{\frac{1}{x^2}-3

which can be written as:

=x^2+{\frac{1}{x^2}-2-1

=(x-{\frac{1}{x}})^2-1^2

=(x-{\frac{1}{x}}-1)(x+{\frac{1}{x}}+1)

which is the required factorized form.

Answered by mysticd
54

Answer:

x^{2}+\frac{1}{x^{2}}-3=(x-\frac{1}{x}+1)(x-\frac{1}{x}-1)

Step-by-step explanation:

Given, \\x^{2}+\frac{1}{x^{2}}-3

=[x^{2}+\frac{1}{x^{2}}-2]-1

=[x^{2}+\frac{1}{x^{2}}-2\times x\times \frac{1}{x}]-1

=\left(x-\frac{1}{x}\right)^{2}-1^{2}

/* By algebraic identity:

-2ab+ = (a-b)² */

=(x-\frac{1}{x}+1)(x-\frac{1}{x}-1)

/* By algebraic identity:

-b² = (a+b)(a-b) */

Therefore,

x^{2}+\frac{1}{x^{2}}-3=(x-\frac{1}{x}+1)(x-\frac{1}{x}-1)

•••♪

Similar questions