Math, asked by Anonymous, 1 year ago

factorise X square + 3 X + 2​

Answers

Answered by LovelyG
9

Answer:

\large{\underline{\boxed{\sf (x+1)(x + 2)}}}

Step-by-step explanation:

Given that ;

x² + 3x + 2

We can easily factorise it by splitting the middle term. We need two numbers such that their product is 2 and sum is 3.

Such two numbers can be 2 and 1.

 \sf x {}^{2}  + 3x + 2 \\  \\ \implies \sf  {x}^{2}  + (1 + 2)x + 2 \\  \\ \implies \sf  {x}^{2}  + x + 2x + 2 \\  \\ \implies \sf x(x + 1) + 2(x + 1) \\  \\ \implies \sf  (x + 1)(x + 2)

Further, If you need the value of x,

  • (x + 1) = 0 ⇒ x = - 1
  • (x + 2) = 0 ⇒ x = - 2

_______________________

Hence, the answer is (x + 1)(x + 2).


LovelyG: Welcome :)
Answered by BrainlyConqueror0901
84

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{(x+2)(x+1)}}}}}}

\huge{\red{\boxed{\boxed{\green{\sf{x=-1,-2}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

    \:  \:  \:  \:  \:  \:  \:{ \pink {given}}\\ {\green{\boxed{ {x}^{2}  + 3x + 2 = 0}}} \\  \\ { \blue{to \: find}} \\{  \red{ \boxed{x = ?}}}

_________________________________________

 { \orange{\boxed{FIRST \: METHOD}}} \\  \\  {\pink{middle \: term \: spliting}} \\ \to  {x}^{2}  + 3x + 2  = 0\\   \to  {x}^{2}  + 2x + x + 2  = 0\\  \to x(x + 2) + 1(x + 2)  = 0\\  \to (x + 2)(x + 1) = 0 \\ \\   \to x + 2 = 0 \\   \to x =  - 2 -  -  -  -  - 1st \: zeroes \\  \\  \to \: x + 1 = 0 \\  \to \: x =  - 1 -  -  -  -  - 2nd \: zeroes \\  \\ { \orange {\boxed{SECOND \:METHOD}}} \\  \\  {\pink{quadratic \: formula}} \\  {x}^{2}  + 3x + 2 = 0 \\ d =  {b}^{2}  - 4ac \\ d =  {3}^{2} - 4 \times 2 \\  d = 9 - 8 \\ d = 1 \\  \\ x =  \frac{ - b +  -  \sqrt{d} }{2a}   \\ x =  \frac{ - 3 + 1}{2}  \\  x =  - 1 -  -  -  -  - 1st \: zeroes \\ x =  \frac{ - 3 - 1}{2}  \\ x =  \frac{ - 4}{2}  \\ x =  - 2 -  -  -  -  - 2nd \: zeroes

\huge{\red{\boxed{\boxed{\green{\sf{(x+2)(x+1)}}}}}}

\huge{\red{\boxed{\boxed{\green{\sf{x=-1,-2}}}}}}

_________________________________________

Similar questions