factorize :27×3 + y3 + z3 -9xyz
Answers
Answered by
4
Given
p(x) = 27x³ + y³ + z³ - 9xyz.
To factorise the given polynomial
Here, we observe that
27x³ = (3x)³
y³ = (y)³ and z³ = (z)³
-9xyz = -3(3x)(y)(z)
So, we know that,
a³ + b³ + c³ - 3abc =
(a + b + c)(a² + b² + c² - ab - bc - ca)
Hence,
27x³ + y³ + z³ - 9xyz =
(3x + y + z){(3x)² + y² + z² - (3x)(y) - (3x)(z) - (y)(z)}
= (3x + y + z)(9x² + y² + z² - 3xy - 3xz - yz)
Answer :- (3x + y + z)(9x² + y² + z² - 3xy - 3xz - yz)
p(x) = 27x³ + y³ + z³ - 9xyz.
To factorise the given polynomial
Here, we observe that
27x³ = (3x)³
y³ = (y)³ and z³ = (z)³
-9xyz = -3(3x)(y)(z)
So, we know that,
a³ + b³ + c³ - 3abc =
(a + b + c)(a² + b² + c² - ab - bc - ca)
Hence,
27x³ + y³ + z³ - 9xyz =
(3x + y + z){(3x)² + y² + z² - (3x)(y) - (3x)(z) - (y)(z)}
= (3x + y + z)(9x² + y² + z² - 3xy - 3xz - yz)
Answer :- (3x + y + z)(9x² + y² + z² - 3xy - 3xz - yz)
Similar questions