Factorize 3x^3-12x^2-x+4
Answers
Answered by
1
Answer:
Factorization is determined either by taking common factor or
computing δ
3x3−12x2−45x
=3x(x2−4x−15)
δ=(−4)2−4(1)(−15)
δ=16+60
δ=76
Since δ>0 so x2−4x−15 admits two roots :
The first root is:
x1=−(−4)+√762
x1=4+2√192
The second root is:
x1=−(−4)−√762
x2=4−2√192
Then :
x2−4x−15=(x−4+2√192)(x−4−2√192)
Therefore:
3x3−12x2−45x
=3x(x2−4x−15)
=3x(x−4+2√192)(x−4−2√192)
PLEASE MARK ME AS BRAINLIEST
Similar questions