Math, asked by sonipritam1980, 1 year ago

Factorize the following​

Attachments:

Answers

Answered by Queen224149
2

  \blue{hope \: it \: helps}

Attachments:
Answered by Brâiñlynêha
1

\huge\mathbb{\red{\underline{\blue{ANSWER:-}}}}

\boxed{\red{\sf{\underline{(8x+5z-4)(8x-5z-4)}}}}

\huge\mathtt{\underline{\underline{\red{SOLUTION:-}}}}

we have given in the question :-

\sf 16(2x-1){}^{2}-25z{}^{2}

\sf{\purple{Let (2x-1)= x}}

The. put this value:-

\sf 16x{}^{2}-25z{}^{2}

\mathtt{\underline{\red{According\:to\: question:-}}}

\boxed{\sf{identity used :-}}

\sf a{}^{2}-b{}^{2}\\ \\ \sf\implies (a+b)(a-b)

Now in the place of a=4 and b=5

Then the solution:-

\sf 16x{}^{2}- 25z{}^{2}\\ \\ \sf\implies(4x){}^{2}-(5z){}^{2}\\ \\ \sf\implies (4x+5z)(4x-5y)

Now put the value of x which is

(2x-1)

\sf [4(2x-1)+5z][4(2x-1)-5z]\\ \\ \sf\implies (8x+5z-4)(8x-5z-4)

\boxed{\red{\bf{\underline{(8x+5z-4)(8x-5z-4)}}}}

#Answerwithquality

#BAL

Similar questions