Math, asked by BrainlySparrow, 9 hours ago

Factorize the following :
 \longrightarrow \: \boxed{ \bf \:  {x}^{4}  + \dfrac{2}{x} +  \dfrac{1}{ {x}^{6} }   }

• Don't spam
• Copied answers will be reported!
• Thanks :) ​

Answers

Answered by Saby123
48

Solution :

To factorise -

x⁴ + 2/x + 1/x⁶

>> 1/x⁶( x¹⁰ + 2x⁵ + 1)

>> 1/x⁶( x¹⁰ + x⁵ + x⁵ + 1)

>> 1/x⁶[ x⁵(x⁵ + 1) + 1(x⁵+1)]

>> 1/x⁶[x⁵+1]²

>> [x⁵+1]²/x⁶

>> [ (x⁵+1)/x³ ]²

>> [ x² + 1/x³]²

This is the required answer .

__________________________________

Answered by Itzheartcracer
32

Given :-

x⁴ + 2/x + 1/x⁶

To Find :-

Factorize

Solution :-

\sf x^4+\dfrac{2}{x}+\dfrac{1}{x^6}

\sf x^4+\dfrac{2x^5+1}{x^6}

\sf \dfrac{x^4\times x^6+2x^5+1}{x^6}

\sf\dfrac{x^{(4+6)}+2x^5+1}{x^6}

\sf\dfrac{x^{10}+2x^5+1}{x^6}

Taking out 1/x⁶ common

\sf\dfrac{1}{x^6}\bigg(x^{10}+2x^5+1\bigg)

\sf\dfrac{1}{x^6}\bigg(x^{10}+x^5+x^5+1\bigg)

\sf\dfrac{1}{x^6}\bigg(x^5(x^5+1)+1(x^5+1)\bigg)

\sf\dfrac{1}{x^6}\bigg((x^5+1)(x^5+1)\bigg)

\sf\dfrac{1}{x^6}\bigg((x^5+1)^2\bigg)

\sf\dfrac{1}{(x^3)^2}\bigg((x^5+1)^2\bigg)

\sf\dfrac{(x^5+1)^2}{(x^3)^2}

\sf \bigg(\dfrac{1+x^5}{x^3}\bigg)^2

Similar questions