Math, asked by tridib50, 10 months ago

Fast guys...plz help​

Attachments:

Answers

Answered by Anonymous
0

Here,

(cos30°+sin60°)/(1+cos30°sin60°)

=(√3/2+√3/2)/(1+√3/2×√3/2)

=(2√3/2)(1+3/4)

=(2√3/2)(7/4)

=14√3/8

=7√3/4

Hope this will help you.

Answered by Anonymous
26

{ \tt{ \huge {Question \colon}}}

{ \rm{ \dfrac{  cos30 \degree+ \: sin 60 \degree}{1 +   \: cos30 \degree   sin 60 \degree} }}

{ \tt{ \huge {Solution \colon}}}

{ \rm{ \dfrac{ \dfrac{ \sqrt{3} }{2} +  \dfrac{ \sqrt{3} }{2}  }{ 1 +  \dfrac{ \sqrt{3} }{2} \times  \dfrac{ \sqrt{3} }{2}  } }}

 { \rm{  =  \dfrac{ \dfrac{ \sqrt{3}  +  \sqrt{3} }{2} }{1 +  \dfrac{3}{4} } }}

 { \rm{  =  \dfrac{ \dfrac{2 \sqrt{3} }{2} }{ \dfrac{4 + 3}{4} } }}

{ \rm{ =  \dfrac{ \sqrt{3} }{ \dfrac{7}{4} } }}

{ \rm{ =  \sqrt{3}  \times  \dfrac{4}{7} }}

{ \rm{ =  \dfrac{4  \sqrt{3} }{7} }}

──────────────────────────

{ \rm{ \large more \: related \: formulas}}

{ \rm{(i) {sin}^{2}  \theta  +  {cos}^{2}  \theta = 1 }}

{ \rm{(ii) {sec}^{2}  \theta   -  {tan}^{2}  \theta = 1 }}

{ \rm{(iii) {cosec}^{2}  \theta   -  {cot}^{2}  \theta = 1 }}

{ \rm{ sin  \theta=  \dfrac{p}{h} }}

{ \rm{ cos \theta=  \dfrac{b}{h} }}

{ \rm{ tan \theta=  \dfrac{p}{b} }}

{ \rm{ cosec \theta=  \dfrac{h}{p} }}

{ \rm{ sec \theta=  \dfrac{h}{b} }}

{ \rm{ cot \theta=  \dfrac{b}{p} }}

{ \rm{where}}

{ \rm{p = perpendicular}}

{ \rm{b = base}}

{ \rm{h = hypotense}}

Similar questions